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Abstract
In the Kirchhoff model of a biopolymer, conformation dynamics can be
described in terms of solitary waves, for certain special cross-section
asymmetries. Applying this to the problem of electron transport, we show
that the quantum effective potential arising due to the bends and twists of the
polymer enables us to formalize and quantify the concept of a conformon that
has been hypothesized in biology. Its connection to the soliton solution of the
cubic nonlinear Schrödinger equation emerges in a natural fashion.

PACS numbers: 87.15.He, 87.15.−v, 05.45.Yv

Geometry and topology of long chain biopolymers such as proteins and DNA play a significant
role [1] during processes such as replication and transcription. Interesting experiments for
studying the conformation and elastic properties of a single polymer by bending or twisting
it have been devised [2]. The static properties of semi-flexible biopolymers such as actin
which have only bending energy, are described by the well-known wormlike chain (WLC)
model [3] with a single elastic constant, the bending modulus. In contrast, the static DNA
with its double-helix structure is described by the wormlike rod chain (WLRC) model [4]
with an additional elastic constant, the twist rigidity. Although considerable work has been
done on various equilibrium properties of both these elastic models, their intrinsic dynamical
properties have not been studied so far. The latter play a crucial role in the mechanisms of
energy and information propagation along a biopolymer, an issue of vital interest to biologists,
chemists and physicists alike. The equilibrium properties have been studied in [3, 4]. The
study of intrinsic static and dynamical properties of biopolymers, taking into account their
geometry, is a subject of great importance [5, 6]. Such issues are of vital interest in biology as
well as physics, since they would help us understand the mechanisms of storage and transport
of energy and charge along a biopolymer.

In this paper, we describe a biopolymer using the Kirchhoff model [5]. This model starts
with equations that govern the dynamics of a thin rod that in fact characterizes a polymer in the
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well-established WLRC model mentioned above. We are interested in its intrinsic dynamics,
as well as its effect on electron transport, since the measured electrical conductivities of certain
polymers are seen to be much larger than expected due to conventional mechanisms [7]. Under
certain conditions, polymer conformations take on the form of spatially localized nonlinear
excitations. Applying this to the problem of electron transport, we show that the quantum
effective potential arising due to the bends and twists of the polymer enables us to formalize
and quantify the concept of a conformon that has been put forward in biology [7, 8]. It is
expected to play an important role in statics and dynamics of biopolymers in general. Its
connection to the soliton solution of the cubic nonlinear Schrödinger equation emerges in a
natural fashion.

We consider the biopolymer to be a very thin elastic filament (or rod) modelled by a
strip [6], which is defined as a space curve R(s, t), along with a smooth unit vector field d2,
perpendicular to the curve. Here s denotes the arc length of the polymer and t is the time.
The unit tangent to the curve is given by d3 and the third unit vector of the triad is defined as
d1 = d2 × d3, so that the triad (d3, d2, d1) forms a right-handed, orthonormal frame at every
point on the curve.

The space derivatives of the vectors of the frame can be shown to be given by the compact
expression

di,s = k × di , (1)

where i = 1, 2, 3, the subscript s stands for d
ds

, and k, the Darboux vector or ‘twist’ vector is
given by

k(s, t) = k1d1 + k2d2 + k3d3. (2)

Its components ki, i = 1, 2, 3, can be expressed as a function of the curvature k, the torsion τ

and the angle φ between the principal normal to the curve and d1, the normal to the strip:

(k1, k2, k3) = (k sin φ, k cos φ, τ + φs) (3)

Here,

k = |d3,s | (4)

and

τ = d3 · (d3,s × d3,ss)/k2. (5)

The Kirchhoff equations that govern the dynamics of the biopolymer (modelled as a thin
elastic rod) are given (in their dimensionless form) by [5, 9]

gs = Rt t (6)

and

ms + d3 × g = ad1 × d1,t t + d2 × d2,t t , (7)

with

m = k1d1 + ak2d2 + bk3d3, (8)

where the subscript t stands for the time derivative d
dt

. In these equations g(s, t) and
m(s, t) represent the force (or tension) and the torque acting on each cross-section of the
rod. The equations are obtained from the conservation of linear and angular momentum.
The parameter a (0 < a � 1) is a measure of the bending asymmetry of its cross-section.
b = 2a/(1 + σ)(1 + a), σ being the Poisson ratio, is a measure of the change in volume of the
rod as it is stretched.
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First we consider the static version of the Kirchhoff equations (6)–(8). Using the general
expression

g = g1d1 + g2d2 + g3d3 (9)

leads to the following system of equations3:

g1,s + k2g3 − k3g2 = 0 (10)

g2,s + k3g1 − k1g3 = 0 (11)

g3,s + k1g2 − k2g1 = 0 (12)

g2 = k1,s + (b − a)k2k3 (13)

g1 = −ak2,s + (b − 1)k1k3 (14)

bk3,s + (a − 1)k1k2 = 0. (15)

For all φ = nπ/2, n an integer, using equation (3) in equation (15) shows that

k3 = τ = τ0. (16)

Thus the torsion of the polymer is a constant, denoted by τ0. As an example, we first take
φ = π in equation (3) and analyse equations (10)–(15). We find b = 2a. This implies
a = −1/(1 + σ). Further,

g = a ksd1 + (a − b)τ0 kd2 + a
(− 1

2k2 + C2
)

d3, (17)

where C2 is an integration constant. To understand its physical significance, note that for
k = 0 (a straight polymer), g = a C2d3. This essentially means that C2 represents the tension
in the polymer.

With this result, equation (10) leads to the following equation for the curvature k:

kss +
k3

2
= (

C2 − τ 2
0

)
k. (18)

Equation (18)) has two trivial solutions: the straight line k = 0, and the circular helix
k =

√
2
(
C2 − τ 2

0

)
. More interestingly, it admits the following nontrivial solution:

k = 2
√

C2 − τ 2
0 sech

√
C2 − τ 2

0 s, (19)

where, as already stated, τ0 and C2 are constants.
For φ = π

2 , following the same procedure, we get b = 2. This implies a = −(1 + σ)/σ .
We can show that k satisfies an equation of the same form as equation (18). In fact, we can
verify that for all φ = nπ/2, n any integer, the curvature has the form given in equation (19),
and as already found, τ is just a constant, τ0. Since the curvature must be real, equation (19)
shows that C2 must be always greater than τ 2

0 . In the case of a planar polymer, τ0 = 0. Thus
physically, a larger tension is needed to get a twisted polymer, for the case under discussion.

Turning our attention to dynamical solutions, it has been noted in [5] that the Kirchhoff
equations (6) and (7) can support travelling wave solutions for the curvature k, called
Kovalevskaya waves. These are of the same form as the static solution (19), where now
s is replaced by ξ = (s − vt), with v the speed of these spatially localized, solitary waves,
which propagate without change of form. These arise due to a certain nontrivial scaling
property [9] satisfied by the Kirchhoff equations.

3 Note that in equation (14), we have corrected a typographical error which we found in the corresponding equation
obtained in [5].
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We will consider possible quantum mechanical implications of this nontrivial solution
for k, with regard to electron transport on a biopolymer. It has been shown by [10–12] that a
quantum particle in a thin tube whose axis follows a space curve with curvature k and constant
torsion τ0 (as in our case) feels an effective potential [12] of the form

Veff(s) = h̄2

2m

[
−k2(s)

4
+

τ 2
0

2

]
. (20)

Writing down the Schrödinger equation for an electron in the presence of the above
effective potential, and making a gauge transformation of the wavefunction ψ1, by using the

following appropriate phase factor ψ1(s, t) = ψ(s, t) exp
(−ih̄ τ 2

0
4m

t
)
, we obtain

− h̄2

2m

(
∂2

∂s2
+

k2(s)

4

)
ψ(s, t) = ih̄

∂

∂t
ψ(s, t). (21)

After rescaling the time such that h̄
4m

t → u and the coordinate s → √
2s1, the Schrödinger

equation reads

iψu + ψs1s1 +
k2

2
ψ = 0, (22)

where k = k(s1), and the subscripts s1 and u stand for the partial derivatives ∂
∂s1

and ∂
∂u

.
Looking for solutions of equation (22) of the form

ψ(s1, u) = k(s1) exp(iαu), (23)

we get (
ks1s1 +

k3

2

)
= αk. (24)

This equation has the same form as equation (18), provided

α = (
C2 − τ 2

0

)
. (25)

Using the solution given in equation (19) (with s replaced by s1) in equation (23), we get

ψ(s1, u) = 2
√

α sech
√

αs1 exp i(αu), (26)

where α � 0. It is readily seen that the wavefunction of the electron is localized around that
point on the polymer where the maximum of its curvature is located. Further, it has a simple
sinusoidal time dependence like a breather.

Since α = k2(s = 0)/4 = k2
0

/
4, equation (25) leads to

k2
0

4
+ τ 2

0 = C2. (27)

This leads to an interesting constraint between the maximum curvature k0 and the constant
torsion τ0 of the polymer, C2 being the constant representing tension.

We choose various values of α and τ0 that satisfy this constraint. Note that α � C2, from
equation (25). The actual conformation of the polymer, which has a space-dependent curvature
k = 2

√
α sech

√
αs1 and a constant torsion τ = τ0, can be found by integrating equations (1).

Typically, we find that polymer has a single non-intersecting twisted loop, centred around
s1 = 0. It straightens out as s1 → ±∞, as it should, since its curvature is readily seen to
vanish in those limits. Figure 1 gives an example of such a conformation, for C2 = 2, with
α = 1 and τ0 = 1. For the same C2, smaller values of torsion, e.g., τ0 = 0.7, make the loop
curve more around the centre, while for larger values, e.g.,τ0 = 1.23, the opposite happens,
and the loop starts ‘unravelling’ and straightens out more. Our results show how the above
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Figure 1. Polymer conformation for curvature k as given in equation (19) with (C2 − τ 2
0 ) = α = 1

and torsion τ = τ0 = 1. Note the localized twisted loop on the polymer.

conformation of a polymer that emerges directly from static Kirchhoff equations, can lead to
electron localization, i.e., ‘trapping’ of an electron around the maximum curvature point on
the twisted loop that develops mid-way on the polymer. As already mentioned, the dynamical
solutions for the curvature k are just Kovalevskaya travelling waves, given by

k(s1, u) = k(s1 − vu) = 2
√

α sech[
√

α(s1 − vu)]. (28)

For this case, the wavefunction of the electron is to be found as the solution of the corresponding
time-dependent Schrödinger equation (22), where now k = k(s1 − vu) is given in (28). Thus
for this dynamical case, we look for a solution of the form

ψ(s1, u) = k(s1 − vu) exp i[λs1 + µu], (29)

where λ and µ are to be found by substituting equation (29) into equation (22), with k as in
(28). After some algebra, we find

λ = (v/2), µ = (α − λ2) =
[
C2 − τ 2

0 − v2

4

]
, (30)

on using equation (25). Substituting for λ and µ from equation (30) and k(s1 − vu) from
equations (28), (29) becomes

ψ = 2
√

α sech[
√

α(s1 − vu)] exp i

[
v

2
s1 +

(
α − v2

4

)
u

]
. (31)

This is identical to the envelope soliton solution of the following, completely integrable [13]
cubic nonlinear Schrödinger equation (CNLSE),

iψu + ψs1s1 +
|ψ |2

2
ψ = 0. (32)
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This is as expected, because for solution (29) that we have considered, k2 = |ψ |2, so that
equation (22) reduces to equation (32).

From equation (31), it is clear that the envelope soliton has a localized profile: its modulus
travels with envelope velocity Ve = v, while its phase has a carrier velocity Vc given by

Vc = −(µ/λ) = (v2 − 4α)

2v
=

[
v2 − 4

(
C2 − τ 2

0

)]
2v

. (33)

This leads to the well-known inequality v[v − 2Vc] � 0 between these two velocities of the
CNLSE soliton on the polymer. From equation (33), we see that for a given v, Vc depends on
the tension and torsion of the polymer.

Incorporating the additional phase factor exp
(−iτ 2

0 u
)

due to the gauge transformation we
had made earlier, we finally obtain the following travelling wave solution for the wavefunction
ψ1(s1, u):

ψ1(s1, u) = 2
√

α sech (
√

α(s1 − vu)) exp i
[
vs1 +

(
C2 − 2τ 2

0 − v2
)
u
]
, (34)

where α is defined in equation (25). It is easy to see that in this case, the electron gets trapped
by a moving potential well, which travels along the polymer. To understand the conformation
here, we note that the polymer now has a curvature which is a Kovalevskaya solitary wave,
travelling without change of form: k = 2

√
α sech (

√
α(s1 − v u). The conformation is again

a twisted loop, but now it travels with a constant velocity v. Thus the electron gets trapped in
the loop, and is transported along with it, on the polymer. As we have seen, its transport is
soliton-like in this case.

We believe that our results provide a precise dynamical underpinning for the conformon
concept hypothesized by various authors [8, 14, 15] to play an important role in biology. Green
and Ji [8] state that a conformon is a localized packet of energy (and genetic information). It is
an energy packet associated with a conformational strain, which is localized in a region much
shorter than the length of the molecule [7]. We find the curvature k to be a localized function.
Since the energy density on the polymer is proportional to k2, this leads to a localized packet
of energy.

Volkenstein [14] suggests that a conformon is like an ‘electron plus conformational
change’. Kemeny and Goklany [15] remark that ‘in some sense, the conformon is a
generalization of a polaron’. As is well known, a polaron is a localized electronic bound
state in a discrete lattice, which is not perfectly periodic. It is formed by the trapping of the
electron due to the nonlinearities arising from its strong coupling to the lattice (phonons).
Here, we mention that in the specific context of an α-helical protein, starting with a quantum
mechanical discrete lattice model, and invoking electron–phonon coupling, a CNLSE has
been derived in the continuum approximation, by Davydov [16].

On the other hand, our work deals with conformational aspects. Using the Kirchhoff
model (which is a continuum model per se), we have shown that a localized electronic state
arises in the curved and twisted polymer. This is essentially because its curvature and torsion
‘interact’ with the electron by inducing a potential well, which traps it, in addition to creating a
nonlinearity in its Schrödinger equation. While this scenario is indeed somewhat analogous to
the polaron picture described above, the origin of the two mechanisms are quite distinct, with
the curved geometry of the polymer playing a key role in the creation of a conformon. We
conjecture that the moving soliton solution that arises, along with its robust propagation
can provide an explanation for the unexpectedly high electrical conductivity (around
1022 U cm−1) found in certain biopolymers. It represents a novel mechanism of charge
transport without dissipation which is not restricted to low temperatures.
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Finally, we have shown how the geometry of polymers, nonlinearity and quantum particle
transport are intimately related. Thus our results are also likely to be of significance in other
kinds of transport phenomena in molecular biology.
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